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Abstract 

Finite element analysis （FEA） has been widely used in various fields 

of industrial product analysis. During the whole process of FEA, mesh model 

generation plays a key role, which directly influences the accuracy and speed 

of FEA. In order to generate high quality mesh, a number of topology-based 

mesh optimization methods have been proposed and applied. However, they 

are all quite time consuming. In this paper, we propose a SVM-based approach 

to topological optimization of tetrahedral meshes, aiming to improve the effi-

ciency of topological mesh optimization by using machine learning technique. 

First, the methodology of the SVM-based topological mesh optimization is put 

forward. Then the specific features for three kinds of flip operations for tetra-

hedral meshes are identified and the corresponding SVM models are further 

set up. Finally three SVM-based flip operations are implemented and the ap-

proach is verified and analyzed. The experiment result shows the SVM-based 

mesh optimization method can improve the mesh optimization efficiency 

without losing mesh quality. 

 

Keywords: Mesh Optimization, Finite Element Analysis, SVM, Edge Col-

lapse, Flip  

Introduction 

The application of finite element method (FEM) generally starts with dis-

cretizing a continuous CAD (Computer Aided Design) model into tetrahedral 

meshes by automatic mesh generation tools. However, the meshes directly 

generated usually do not meet the requirements of qualitative solution compu-

tations due to the low quality meshes or distorted meshes generated. Therefore 
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a lot of mesh improvement methods have been proposed to optimize the mesh 

quality. In general, the current mesh optimization methods can be classified in-

to two categories, smoothing and topological transformation.  

Smoothing improves the mesh quality by repositioning the vertices of 

meshes without modifying its topology. The most famous smoothing algo-

rithm is Laplacian Smoothing proposed by L.R.Hermann[1], which moves 

each internal vertex of the meshes to the average of its adjacent neighbors. 

However, it is inevitable to produce tetrahedrons of poor quality. V. N. 

Parthasarathy and S. Kodiyalam[2] proposed a better smoothing method via 

defining an objective function and using numerical optimization method to 

carry out the smoothing process. L. Freitag, M. Jones, and P. Plassman[3] pro-

posed an optimization method whose objective function is not continuous. 

Consequently, the improvement of the adjacent tetrahedron group of a vertex 

can take place regardless of the identical change of the worst tetrahedron in 

this group. 

On the other hand, topological transformation improves the mesh quality 

by adjusting the connectivity of the meshes. It is a local mesh improvement 

method, where only the meshes within a certain area are changed. The most 

common topological transformations for tetrahedral meshes are 2-2 flip, 2-3 

flip and 3-2 flip[4]. The 2-2 flip deletes the two tetrahedrons on the same co-

planar boundary face and replaces them with two new tetrahedrons. The 2-3 

flip deletes the two tetrahedrons sharing a face and replaces them with three 

new tetrahedrons with a new edge shared. The 3-2 flip is just the inverse oper-

ation of 2-3 flip, which deletes the three tetrahedrons sharing an edge and re-

places them with two tetrahedrons sharing a face. The more generalized topo-

logical transformations are edge removal and multi-face removal. Edge 

removal, proposed by E. Briere de L’Isle and P.L. George[5], replaces m tetra-

hedrons with 2m-4 new tetrahedrons (2m-2 if the edge is on the mesh bounda-

ry), while multi-face removal[6] replaces 2m tetrahedron with m+2 new tetra-

hedrons. In addition, edge contraction originally used for coarsen[7, 8] is 

adopted to optimize meshes by B.M. Klingner[4], which removes an edge and 

deletes all the meshes sharing that edge. B.M. Klingner and J.R. Shewchuk[6] 

also used vertex insertion to improve a particularly bad tetrahedron of the 

mesh by inserting a new vertex within its interior or on its boundary. 

Support vector machine (SVM)[9] is an effective machine learning meth-

od used for classification and regression analysis. SVM usually takes a set of 

input data for behavior training, through which an SVM model can be gener-

ated and used to predict future events. An SVM model is a representation of 

space division by putting gap line according to the distribution of the input da-

ta and its classification. Its goal is to make the gap between each separate class 

as wide as possible so that the classification is clear. With the availability of 

the built SVM model, new examples can then be mapped into the same space 

and predicted according to which side they are to the gap line. 

It is observed that topological transformation is very important for im-
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proving tetrahedral mesh quality on the one side; on the other side, it is too 

time-consuming to use for large scale meshes due to its very low success rate. 

According to B.M. Klingner[4], the success rate of topological operations such 

as flip operation and edge contraction is below 40%.  

In order to improve the efficiency of the topological transformation, the 

bottle-neck of its practical application, we put forward in this paper a SVM-

based approach to topological optimization of tetrahedral meshes, which is in-

tended to improve the efficiency of topological transformation by improving 

its success rate with the help of machine learning technique.  

Overview of the approach 

According to the basic procedure of general topological mesh optimiza-

tion approaches, as shown in Figure 1, each topological operation has to be 

performed on every tetrahedron of the tetrahedral mesh model, and if it fails 

(i.e. the topological operation does not improve the tetrahedron’s quality), the 

program has to roll back. Since the amount of the tetrahedrons whose quality 

need to be improved and can be improved by topological operations are gen-

erally very small, most topological operations generally fail. In other words, 

the time spent on failed topological operations is very big and in essence un-

necessary. Obviously, this is one of the major reasons that cause the current 

topological mesh optimization too time-consuming.  

 

 
 

Fig. 1. The procedure of current topological mesh optimization 

 

 
 

Fig. 2. The procedure of SVM-based topological mesh optimization 
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Based on the above analysis, in order to improve the efficiency of topo-

logical mesh optimization, one possible solution is to limit topological opera-

tions as much as possible onto those tetrahedrons whose quality can be indeed 

improved by the topological operations. And the key point here is how to ef-

fectively determine such tetrahedrons. In view that there has been no way to 

directly and precisely determine such tetrahedrons up to now, we adopt the 

SVM technique to determine such tetrahedrons through its powerful classifica-

tion function. Specifically, SVM is used to classify all tetrahedrons into two 

categories with respect to the topological operation: the tetrahedrons that 

should accept the topological operation according to the sample learning, and 

the tetrahedrons that should not. With the help of SVM-based classification, 

the topological operation can then be performed only on those tetrahedrons 

that the SVM model predicts they should accept the topological operation. 

This way, a large number of unnecessary topological operations along with the 

corresponding roll-back operations can be avoided during the topological 

mesh optimization process, and thus considerable time can be saved. Figure 2 

shows the procedure of our SVM-based topological mesh optimization ap-

proach. 

The proposed approach consists of two parts: the construction of the 

SVM models for topological operations and the features selection involved in 

the SVM model construction, and details of them are described below. 

Construction of the SVM models 

To achieve the SVM-based classification on tetrahedrons with respect to 

the topological operation, a proper SVM model should be constructed first. 

Generally the construction of the SVM model consists of the following six 

steps. Note that, in this work, we use libSVM as a tool to implement SVM 

classification, which is an integrated software for support vector classification, 

regression and distribution estimation developed by Chih-Chung Chang and 

Chih-Jen Lin[10]. 

1. Select the appropriate features and form the feature space to charac-

terize the classification. In view that this step is critical and related to 

the specific topological operation, we will describe it in details in the 

next section. 

2. Construct training set according to the selected features. We imitate 

the method of cross-validation to construct training set, which ran-

domly picks up a certain percentage of data as the training set, while 

others are used as testing data. After have the training set, we extract 

the feature information from the training set and generate a training 

file according to the feature order. The training file set up is for sam-

ple learning. 
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3. Scale the training set. Specifically, scale all features in an appropriate 

range, mostly in [0, 1]. We do this with the svm-scale function pro-

vided by libSVM. 

 
 

Fig. 3. The flow chart of the SVM model construction 

 

4. Choose a suitable kernel function. To find a proper kernel function 

that can better separate the feature space, all kernel functions are 

tested with all the training samples, and the radial basis function is 

found to have the highest prediction accuracy averagely, and it is thus 

chosen as our kernel function. 

5. Searching for the best parameters C and gamma. C is the penalty co-
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efficient used to define how much error can be tolerated, and gamma 

is related to the kernel function being chosen, influencing the final 

space distribution. These two parameters much influence the SVM 

prediction accuracy and have to be carefully selected. In this work, 

the parameter selection is conducted using the parameter searching 

tool provided by libSVM, which uses a brutal-force approach to find 

the best parameters. 

6. Set up the SVM model and test the prediction accuracy. Based on the 

above steps, a SVM model can then be set up with libSVM. After 

this, its prediction accuracy is tested. If the prediction accuracy is low, 

go back to step 1 to modify the features. Such process is iterated until 

the required prediction accuracy is reached. 

Selection of the features for SVM classification 

The SVM model is set up through sample learning and the effect of sam-

ple learning strongly relies on the selected features used to characterize the 

classification. Therefore, in order to guarantee the accuracy of the SVM classi-

fication for each type of topological operation, the proper features of the topo-

logical operation should be selected. Our criterion for selecting features is that 

the selected features should be able to reflect the difference between the tetra-

hedrons whose quality can be improved by the topological operation and those 

whose quality cannot be improved by the topological operation.   

The selection of the proper features involves mesh quality measure. In 

this work, we choose minimum sine[6], volume-length[11] and Jacobian de-

terminant[12] as tetrahedron quality measures. Minimum sine of a tetrahe-

dron’s six dihedral angles penalizes both small and large dihedral angles. Vol-

ume-length denoted by 
3/ rmsV  is the signed volume of a tetrahedron divided 

by the cube of its root-mean-squared edge length. Usually it multiplies 6 2  

to get normalized. Jacobian determinant is the determinant of the Jacobian ma-

trix of a tetrahedron’s four vertexes. Usually it is used in normalized form and 

multiplies a transformation matrix. 

For different kinds of topological operations, different features are usual-

ly needed. In this work, the topological operations considered include three 

most commonly used flip operations: 2-2 flip, 2-3 flip and 3-2 flip. Below we 

describe the features selected for 2-2 flip, 2-3 flip and 3-2 flip respectively.  

 

The features for 2-2 flip 
Figure 4 illustrates a 2-2 flip which deletes the internal face shared by 

two adjacent tetrahedrons and replaces it with a crossing face. Here the 

boundary faces of the two tetrahedrons are coplanar. In view that the effect of 
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2-2 flip depends on the specific mesh quality measure, we choose different 

features for the 2-2 flip with different mesh quality measures. 

 

 
Fig. 4. Illustration of 2-2 flip 

 

For the 2-2 flip with volume-length measure, we choose the following 

features: 

1. Volume-length of tetrahedron ABCD. It is used to indicate the origi-

nal quality of a tetrahedron ABCD, showing whether there is room 

for improvement. Meanwhile, volume-length also reflects whether 

the tetrahedron is a “fat” mesh or a spire mesh. 

2. Volume-length of tetrahedron ABDE. It is selected for the same rea-

son as the volume-length of tetrahedron ABCD. 

3. BD  and CE  length ratio. When the length of boundary edge BD is 

longer than that of CE, it is likely that the two new tetrahedrons re-

sulted from 2-2 flip become fatter than un-flipped, which usually 

means better quality. Otherwise, the resulted tetrahedrons may be 

more spire than un-flipped. Therefore such length ratio of two tetra-

hedrons indicates whether fatter tetrahedrons can be obtained 

through 2-2 flip.  

4. Area-length of face BCD. Area-length denoted by 
2/ rmsArea  indi-

cates whether the face is a thin triangle or a fat one. Meanwhile the 

comparison between the area-length of BCD and that of BDE shows 

whether one face is much bigger than the other or not, and if so, bet-

ter quality tetrahedrons can be obtained through 2-2 flip. Because of 

these functions, area-length of BCD is selected as a feature. 

5. Area-length of face BDE. It is selected for the same reason as the ar-

ea-length of face BCD.  

 

For the 2-2 flip with minimum sine measure, we add the following two 

types of features: 

1. Three dihedral angles around vertex C. Dihedral angles are intro-
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duced as the feature related to minimum sine. Meanwhile, these three 

dihedral angles characterize the shape of the tetrahedron around ver-

tex C. 

2. Three dihedral angles around vertex E. They are selected as features 

with the same reason described above. 

 

For the 2-2 flip with Jacobian determinant measure, we remove the first 

and the second features from the features selected for the 2-2 flip with vol-

ume-length measure, and meanwhile add the following two types of features 

for it: 

1. Jacobian determinants of vertex C and vertex E. The Jacobian matrix 

of a vertex characterizes the shape of the three edges adjacent to the 

vertex. Meanwhile, the Jacobian determinants of vertex C and vertex 

E reflect the proportion between the two opposite angles at vertex C 

and vertex E. 

2. Jacobian determinant of tetrahedron ABCD and tetrahedron ABDE. 

The Jacobian determinant of a tetrahedron refers to the one with 

worst value among the four Jacobian determinants of the tetrahe-

dron’s four vertices, which characterizes the quality of a tetrahedron.  

 

The features for 2-3 flip 
2-3 flip is illustrated in Figure 6, which deletes the shared face of two ad-

jacent tetrahedrons and meanwhile creates a new edge to connect two opposite 

vertices. Similar to 2-2 flip, different features are chosen for the 2-3 flip with 

different mesh quality measures. 

For the 2-3 flip with volume-length measure, we choose the following 

features: 

1. Volume-length of tetrahedron ABCD. It is selected as a feature with 

the same consideration as that for 2-2 flip. 

2. Volume-length of tetrahedron ABCE. It is selected for the same rea-

son as that of the volume-length of tetrahedron ABCD. 

3. 
2 /DE ABCArea . This is selected as a feature because it well charac-

terizes the change brought about by 2-3 flip. In addition, it indicates 

whether two tetrahedrons are long and narrow with respect to the 

shared face between them. Specifically, when its value is big, two tet-

rahedrons are long and narrow; otherwise they are fat.  

 

For the 2-3 flip with minimum sine measure, we add the following fea-

tures: 

1. Minimum sine of tetrahedron ABCD and tetrahedron ABCE. Mini-

mum sine shows the quality of a tetrahedron. 

 

For the 2-3 flip with Jacobian determinant measure, we remove the first 
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and the second features from the features selected for the 2-3 flip with vol-

ume-length measure, and meanwhile add the following two types of features 

into  it: 

1. Jacobian determinants of vertex D and vertex E.  

2. Jacobian determinant of tetrahedron ABCD and tetrahedron ABCE. 

They indicate the quality of the original tetrahedrons and also show 

whether there are room for improvement. 

 

 
Fig. 6. Illustration of 2-3 flip and 3-2 flip 

 

The features for 3-2 flip 
3-2 flip is the opposite operation to 2-3 flip, as illustrated by Figure 6. 

For 3-2 flip, we select the following features no matter which mesh quality 

measure is used: 

1. Volume-length of tetrahedron ABDE, tetrahedron BCDE and tetrahe-

dron ACDE. They are selected as features with the same considera-

tion as that for 2-2 flip and 2-3 flip. 

2. Area-length of face ADE, face BDE and face CDE. Each of them in-

dicates whether the corresponding face is a thin triangle or a fat one. 

Meanwhile the comparison between them indicates whether they are 

similar or not. 

RESULTS AND DISCUSSIONS 

The proposed approach to SVM-based topological optimization of tetra-

hedral meshes has been implemented, using libSVM as a tool to implement 

SVM classification. The program is running on a PC with a Core2 Q9400 2.66 

GHz CPU and 4G Memory. The algorithm has been tested by 17 industrial 

models shown in Figure 7. Tables 1-3 summarizes the test results. In these ta-

bles, for each test model, there are three lines of data and each line corre-

sponds to a kind of mesh quality measure, i.e. Jacobian determinant, or mini-
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mum sine, or volume-length respectively. The original time in the tables refers 

to the total time of performing the traditional flip operations, and the SVM-

based time in the tables is the total time of performing the SVM-based flip op-

erations, including the time spent in predicting. Note that N/A in Table 3 

means there is no any edge in the model shared by three tetrahedrons, which is 

the prerequisite of performing 3-2 flip. 

 

Table 1. Flip2-2 test results 

 

Models  Num of 

Tetras 

Predic-

tion ac-

curacy 

Orig-

inal 

time 

(s) 

Svm-

based 

time 

(s) 

Models  Num of 

Tetras 

Predic-

tion ac-

curacy 

Orig-

inal 

time 

(s) 

Svm-

based 

time (s) 

1 58037 91.46% 3.99 3.85 e1 20079 88.38% 0.68 0.65 

97.22% 3.59 3.67 94.15% 0.65 0.64 

96.27% 3.77 3.57 92.72% 0.67 0.6 

cad_cu

be _out 

362 100% 0.011 0.008 gear10k 10058 76.28% 0.28 0.27 

92.31% 0.011 0.008 79.62% 0.27 0.27 

92.31% 0.012 0.008 80.64% 0.27 0.26 

Clg 26482 90.59% 1.01 0.93 house2 1389 84.90% 0.035 0.033 

95.16% 0.97 0.91 88.86% 0.034 0.032 

94.60% 1 0.86 90.35% 0.033 0.03 

Cow 42053 99.06% 1.75 1.12 P 926 83.68% 0.024 0.023 

98.99% 1.82 1.41 88.89% 0.021 0.022 

99.17% 1.93 1.08 87.15% 0.021 0.02 

crank_

arm 

13157 86.98% 0.39 0.35 rand1 5104 87.70% 0.103 0.102 

94.97% 0.4 0.35 84.76% 0.102 0.102 

93.43% 0.39 0.33 88.21% 0.105 0.099 

cube1k 1184 97.88% 0.042 0.027 rand2 25704 86.94% 0.727 0.619 

97.89% 0.041 0.026 83.31% 0.658 0.583 

99.30% 0.045 0.028 88.33% 0.685 0.571 

cu-

be10k 

11660 99.90% 0.43 0.25 Tfire 1104 89.41% 0.032 0.018 

99.70% 0.43 0.25 95.29% 0.032 0.018 

100% 0.43 0.24 90% 0.033 0.017 

Dragon 32959 99.49% 1.32 0.926 Tire 11098 91.78% 0.334 0.139 

99.26% 1.34 1.2 96.16% 0.329 0.137 

99.65% 1.37 0.84 92.64% 0.333 0.133 

e0 46471 91.60% 2.42 2.19           

97.06% 2.57 2.15       

96.35% 2.46 2.01       
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Table 2. Flip2-3 test results 

 
Models Num of 

Tetras 

Predic-

tion ac-

curacy 

Orig-

inal 

time 

(s) 

Svm-

based 

time 

(s) 

Models  Num of 

Tetras 

Predic-

tion ac-

curacy 

Orig-

inal 

time 

(s) 

Svm-

based 

time 

(s) 
1 58037 99.97% 2.314 1.304 e1 20079 100% 0.731 0.516 

99.97% 2.17 1.18 100% 0.555 0.433 

99.68% 2.151 1.373 100% 0.548 0.522 

cad_cube 

_out 

362 100% 0.009

7 

0.0025 gear10k 10058 100% 0.322 0.277 

100% 0.009

8 

0.0025 100% 0.259 0.24 

100% 0.012

2 

0.003 100% 0.259 0.255 

Clg 26482 99.97% 0.968 0.657 house2 1389 100% 0.034 0.032 

99.97% 0.782 0.563 100% 0.036 0.029 

99.97% 0.751 0.667 100% 0.034 0.034 

Cow 42053 99.99% 2.084 1.079 P 926 100% 0.021 0.019 

100% 1.704 0.917 100% 0.021 0.017 

99.96% 1.692 1.064 100% 0.023 0.022 

crank_ar

m 

13157 100% 0.395 0.33 rand1 5104 86.63% 0.118 0.076 

100% 0.339 0.289 87.18% 0.116 0.071 

100% 0.341 0.335 82.32% 0.109 0.082 

cube1k 1184 100% 0.042 0.011 rand2 25704 83.86% 0.879 0.43 

100% 0.043 0.011 84.32% 0.677 0.351 

100% 0.043 0.011 80.15% 0.639 0.436 

cube10k 11660 100% 0.506 0.428 Tfire 1104 99.79% 0.032 0.029 

100% 0.431 0.378 100% 0.035 0.025 

99.99% 0.435 0.371 99.69% 0.032 0.032 

Dragon 32959 99.98% 1.572 0.713 Tire 11098 99.93% 0.429 0.325 

99.99% 1.25 0.593 99.98% 0.34 0.311 

99.92% 1.241 0.676 99.88% 0.336 0.335 

e0 46471 99.97% 2.066 1.155           
99.98% 1.635 0.974       
99.97% 1.644 1.147       

 

 



12                                                         Xiaoshen Chen, Dewen Peng, Shuming Gao* 

Table 3. Flip3-2 test results 

 

From Table 1-3, we can see that, for the SVM-based 2-2 flip and 2-3 flip, 

the average prediction accuracy is above 90% and the average percentage of 

the time saved compared with the traditional 2-2 flip and 2-3 flip is about 10%. 

However, for the SVM-based 3-2 flip, its prediction accuracy is low for cer-

tain models like rand1 and rand2 in Figure 7; and its efficiency is not as good 

as that of 2-2 flip or 2-3 flip and even could be slower than that of the tradi-

Models  Num of 

Tetras 

Predic-

tion  

accura-

cy 

Orig-

inal 

time 

(s) 

Svm-

based 

time 

(s) 

Models  Num 

of 

Tet-

ras 

Predic-

tion  

accura-

cy 

Orig-

inal 

time 

(s) 

Svm-

based 

time (s) 

1 58037 98.26% 2.016 2.027 e1 20079 98.18% 0.518 0.518 

99.02% 1.967 1.947 99.09% 0.517 0.51 

98.08% 1.873 1.82 97.92% 0.446 0.445 

cad_cub

e _out 

362 100% 0.004

9 

0.0048 gear10k 10058 100% 0.221 0.212 

100% 0.004

8 

0.0046 100% 0.219 0.21 

100% 0.003

8 

0.0037 99.88% 0.193 0.186 

Clg 26482 98.48% 0.771 0.774 house2 1389 100% 0.023 0.022 

99.39% 0.769 0.761 100% 0.024 0.023 

98.65% 0.693 0.692 99.31% 0.02 0.019 

Cow 42053 N/A N/A N/A P 926 100% 0.015 0.014 

N/A N/A N/A 100% 0.015 0.015 

N/A N/A N/A 100% 0.013 0.012 

crank_ar

m 

13157 98.47% 0.323 0.324 rand1 5104 61.38% 0.11 0.107 

99.49% 0.321 0.318 54.50% 0.112 0.109 

98.39% 0.289 0.289 64.02% 0.092 0.09 

cube1k 1184 N/A N/A N/A rand2 25704 56.94% 0.79 0.784 

N/A N/A N/A 54.74% 0.802 0.8 

N/A N/A N/A 62.04% 0.701 0.701 

cube10k 11660 N/A N/A N/A Tfire 1104 N/A N/A N/A 

N/A N/A N/A N/A N/A N/A 

N/A N/A N/A N/A N/A N/A 

Dragon 32959 N/A N/A N/A Tire 11098 91.30% 0.167 0.16 

N/A N/A N/A 73.91% 0.169 0.163 

N/A N/A N/A 86.96% 0.17 0.163 

e0 46471 97.03% 1.413 1.447           
98.97% 1.415 1.412       
97.65% 1.266 1.287       
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tional 3-2 flip for few models such as e0 in Figure 7. By analyzing the reason 

for this, we find that the high success rate of 3-2 flip is the key factor. Accord-

ing to our test, the success rate of 3-2 flip is averagely above 80%. It means 

that the most original 3-2 flip operations can improve the quality of the related 

tetrahedrons, and thus it is not necessary to do additional prediction by SVM 

for them. From Table 1-3, we can also find that, for each kind of flip operation, 

the difference between prediction rate and the running time caused by taking 

different mesh quality measures is minor, averagely below 5%. 

The experimental results show that the SVM-based method can effective-

ly improve the efficiency of topological mesh optimization. And obviously the 

more sophisticated a topological operation is, the greater the effect of its cor-

responding SVM-based operation will be.  

CONCLUSIONS 

This paper presents a novel SVM-based approach to topological optimi-

zation of tetrahedral meshes. The approach exploits SVM to predict whether 

the quality of a tetrahedron can be improved by performing the topological 

operation on it first, and then determines whether to conduct the topological 

operation on the tetrahedron according to the prediction result. In this way, the 

time-consuming topological operations can be limited as much as possible, on-

ly onto those tetrahedrons whose quality can be really improved by the topo-

logical operations. Consequently, considerable time can be saved by avoiding 

large number of unnecessary topological operations along with the corre-

sponding roll-back operations. As the first step of the research, three SVM-

based flip operations are implemented, and the experiment results show the 

potential of the SVM-based mesh optimization approach. 

 Our future work mainly consists of three aspects. First, construct SVM 

models for more sophisticated topological operations. We have already begun 

to construct SVM model for edge contraction, which consumes more running 

time and usually has less than 10% success rate. Second, construct SVM mod-

els for composite mesh improvement methods. Since topological operations 

are usually performed together with smoothing afterwards, a better SVM 

model should be able to predict these composite operations together. Third, 

extend the proposed approach to topology-based hexahedron mesh optimiza-

tion.  



14                                                         Xiaoshen Chen, Dewen Peng, Shuming Gao* 

 
 

Fig. 7. Test models 
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